MOTORES ELÉTRICOS
Motor elétrico é a máquina destinada a transformar energia elétrica em energia mecânica. O motor de indução é o mais usado de todos os tipos de motores, pois combina as vantagens da utilização de energia elétrica, baixo custo, facilidade de transporte, limpeza e simplicidade de comando com sua construção simples, custo reduzido, grande versatilidade de adaptação às cargas dos mais diversos tipos e melhores rendimentos. Os tipos mais comuns de motores elétricos são:
3.1 - Motores de Corrente Contínua
São motores de custo mais elevado e, além disso, precisam de uma fonte de corrente contínua, ou de um dispositivo que converta a corrente alternada comum em contínua. Podem funcionar com velocidade ajustável entre amplos limites e se prestam a controles de grande flexibilidade e precisão. Por isso, seu uso é restrito a casos especiais em que estas exigências compensam o custo muito mais alto da instalação.
3.2 - Motores de Corrente Alternada
São os mais utilizados, porque a distribuição de energia elétrica é feita normalmente em corrente alternada. Os principais tipos são: Motor síncrono: Funciona com velocidade fixa, utilizado somente para grandes potências (devido ao seu alto custo em tamanhos menores) ou quando se necessita de velocidade invariável. Motor de indução: Funciona normalmente com velocidade constante, que varia ligeiramente com a carga mecânica aplicada ao eixo. Devido a sua grande simplicidade, robustez e baixo custo é o motor mais utilizado de todos, sendo adequado para quase todos os tipos de máquinas acionadas, encontradas na prática. Atualmente é possível controlarmos a velocidade dos motores de indução com o auxílio de inversores de freqüência.
3.3 - Constituição do Motor de Indução
O motor assíncrono é constituído basicamente pelos seguintes elementos: um circuito magnético estático, constituído por chapas ferromagnéticas empilhadas e isoladas entre si, ao qual se dá o nome de estator; por bobinas localizadas em cavidades abertas no estator e alimentadas pela rede de corrente alternada; por um rotor constituído por um núcleo ferromagnético, também laminado, sobre o qual se encontra um enrolamento ou um conjunto de condutores paralelos, nos quais são induzidas correntes provocadas pela corrente alternada das bobinas do estator. O rotor é apoiado num veio, que por sua vez transmite à carga a energia mecânica produzida. O entreferro (distância entre o rotor e o estator) é bastante reduzido, de forma a reduzir a corrente em vazio e, portanto as perdas, mas também para aumentar o fator de potência em vazio. Como exemplo apresentamos a "projeção" dos diversos elementos o motor assíncrono de rotor em gaiola de esquilo.
3.4 - Funcionamento de um Motor Assíncrono
A partir do momento que os enrolamentos localizados nas cavidades do estator são sujeitos a uma corrente alternada, gera-se um campo magnético no estator, consequentemente, no rotor surge uma força eletromotriz induzida devido ao fluxo magnético variável que atravessa o rotor. A f.e.m. induzida dá origem a uma corrente induzida no rotor que tende a opor-se à causa que lhe deu origem, criando assim um movimento giratório no rotor. Como podemos constatar o princípio de funcionamento do motor de indução baseia-se em duas leis do Eletromagnetismo, a Lei de Lenz e a Lei de Faraday. Faraday: "Sempre que através da superfície abraçada por um circuito tiver lugar uma variação de fluxo, gera-se nesse circuito uma força eletromotriz induzida. Se o circuito é fechado será percorrido por uma corrente induzida". Lenz: "O sentido da corrente induzida é tal que esta pelas suas ações magnéticas tende sempre a opor-se à causa que lhe deu origem".
3.5 - Explicação Teórica
O motor elétrico transforma a potência elétrica fornecida em potência mecânica e uma reduzida percentagem em perdas. As perdas, que são inerentes ao processo de transformação, são quantificadas através do rendimento (mais à frente analisamos melhor os vários tipos de perdas nos motores). A Potência Mecânica traduz-se basicamente no torque que o motor gera no eixo do rotor. O torque é conseqüência direta do efeito originado pela indução magnética do estator em interação com a do rotor. T = K . Best . Brot . sen T = Torque K - Constante BBest - Indução magnética criada pelo estator BBrot - Indução magnética criada pelo rotor - ângulo entre Best e Brot A velocidade de um motor de indução é essencialmente determinada pela frequência da energia fornecida ao motor e pelo numero de pares de pólos existentes no estator. No motor assíncrono ou de indução o campo girante roda a velocidade síncrona, como nos motores síncronos. A velocidade do campo girante obtêm-se pela seguinte expressão: Curso Técnico em Plásticos - Jorge Eduardo Uliana - jorge.eu@terra.com.br 8Comando e Motores Elétricos Vg = velocidade do campo girante f = frequência n = numero de pares de pólos Uma característica fundamental dos motores de indução é o escorregamento, daí tratarem-se de motores assíncronos, o seu valor é dado pela seguinte expressão: s – escorregamento V - velocidade do rotor A velocidade sofre um ligeiro decréscimo quando o motor passa de um funcionamento em vazio (sem carga) para um funcionamento em carga máxima.
3.6 - Motores de Indução Monofásicos
Os motores monofásicos são assim chamados porque os seus enrolamentos de campo são ligados diretamente a uma fonte monofásica. Os motores de indução monofásicos são a alternativa natural aos motores de indução trifásicos, nos locais onde não se dispõe de alimentação trifásica, como residências, escritórios, oficinas e em zonas rurais. Apenas se justifica a sua utilização para baixas potências (1 a 2 KW). Entre os vários tipos de motores elétricos monofásicos, os motores com rotor tipo gaiola destacam-se pela simplicidade de fabricação e, principalmente, pela robustez e manutenção reduzida. Por terem somente uma fase de alimentação, não possuem um campo girante como os motores trifásicos, mas sim um campo magnético pulsante. Isto impede que tenham torque de arranque, tendo em conta que no rotor se induzem campos magnéticos alinhados com o campo do estator. Para solucionar o problema de arranque utilizam-se enrolamentos auxiliares, que são dimensionados e posicionados de forma a criar uma segunda fase fictícia, permitindo a formação do campo girante necessário para o arranque. Tipos de Motores de indução monofásicos: ¾ Motor de Pólos Sombreados; ¾ Motor de Fase Dividida; ¾ Motor de Condensador de Partida; ¾ Motor de Condensador Permanente; ¾ Motor com dois Condensadores.
3.6.1 - Motor de Pólos Sombreados
O motor de pólos sombreados, também chamado de motor de campo distorcido (ou shaded pole), graças ao seu processo de arranque, é o mais simples, fiável e econômico dos motores de indução monofásicos. Construtivamente existem diversos tipos, sendo que uma das formas mais comuns é a de pólos salientes. Cada pólo vai ter uma parte (em geral 25% a 35% do mesmo) é abraçada por uma espira de cobre em curto-circuito. A corrente induzida nesta espira faz com que o fluxo que a atravessa sofra um atraso em relação ao fluxo da parte não abraçada pela mesma. O resultado disto ‚ semelhante a um campo girante que se move na direção da parte não abraçada para a parte abraçada do pólo, produzindo o torque que fará o motor partir e atingir a rotação nominal. O sentido de rotação, portanto, depende do lado em que se situa a parte abraçada do pólo. Consequentemente, o motor de campo distorcido apresenta um único sentido de rotação. Este geralmente pode ser invertido, mudando-se a posição da ponta de eixo do rotor em relação ao estator. Existem outros métodos para se obter inversão de rotação, mas muito mais dispendiosos. Quanto ao desempenho, os motores de campo distorcido apresentam baixo torque de arranque (15% a 50% do nominal), baixo rendimento e baixo fator de potência. Devido a esse fato, eles são normalmente fabricados para pequenas potências, que vão de alguns milésimos de cv a 1/4 cv. Comando e Motores Elétricos Pela sua simplicidade, robustez e baixo custo são ideais em aplicações tais como: movimentação de ar (ventiladores, exaustores, purificadores de ambiente, unidades de refrigeração, secadores de roupa e de cabelo), pequenas bombas e compressores, projetores de slides, gira-discos e aplicações domésticas. Apesar de sua aparente simplicidade, o projeto deste tipo de motor é de extrema complexidade, envolvendo conceitos de duplo campo girante, campos cruzados e complexa teoria eletromagnética.
3.6.2 - Motor de Fase Dividida
Este motor possui um enrolamento principal e um auxiliar (para o arranque), ambos defasados de 90 graus. O enrolamento auxiliar cria um deslocamento de fase que produz o torque necessário para a rotação inicial e a aceleração. Quando o motor atinge uma rotação predeterminada, o enrolamento auxiliar‚ é desligado da rede através de uma chave que normalmente é atuada por uma força centrífuga (chave ou disjuntor centrífugo) ou em casos específicos, por relé de corrente, chave manual ou outros dispositivos especiais. Como o enrolamento auxiliar é dimensionado para atuar apenas no arranque, se não for desligado logo após o arranque danifica-se. O ângulo de defasagem que se pode obter entre as correntes do enrolamento principal e do enrolamento auxiliar é pequeno e, por isso, estes motores têm torque de arranque igual ou pouco superior ao nominal, o que limita a sua aplicação a potências fracionárias e a cargas que exigem pouco torque de arranque, tais como máquinas de escritórios, ventiladores e exaustores, pequenos polidores, compressores herméticos, bombas centrífugas, etc.
3.6.3 - Motor de Condensador de Partida
É um motor semelhante ao de fase dividida. A principal diferença reside na inclusão de um condensador eletrolítico em série com o enrolamento auxiliar de arranque. O condensador permite um maior ângulo de defasagem entre as correntes dos enrolamentos principal e auxiliar, proporcionando assim, elevados torques de arranque. Como no motor de fase dividida, o circuito auxiliar é desligado quando o motor atinge entre 75% a 80% da velocidade síncrona. Neste intervalo de velocidades, o enrolamento principal sozinho desenvolve quase o mesmo torque que os enrolamentos combinados. Para velocidades maiores, entre 80% e 90% da velocidade síncrona, a curva do torque com os enrolamentos combinados cruza a curva de torque do enrolamento principal de maneira que, para velocidades acima deste ponto, o motor desenvolve menor torque, para qualquer escorregamento, com o circuito auxiliar ligado do que sem ele. Devido ao fato de o cruzamento das curvas não ocorrer sempre no mesmo ponto e, ainda, o disjuntor centrífugo não abrir sempre exatamente na mesma velocidade, é prática comum fazer com que a abertura aconteça, na média, um pouco antes do cruzamento das curvas. Após a abertura do circuito auxiliar, o seu funcionamento é idêntico ao do motor de fase dividida. Com o seu elevado torque de arranque (entre 200% e 350% do torque nominal), o motor de condensador de partida pode ser utilizado numa grande variedade de aplicações e‚ fabricado para potências que vão de ¼ cv a 15 cv. Motor de Condensador Permanente Neste tipo de motor, o enrolamento auxiliar e o condensador ficam permanentemente ligados, sendo o condensador do tipo eletrostático. O efeito deste condensador é o de criar condições de fluxo muito semelhantes às encontradas nos motores polifásicos, aumentando, com isso, o torque máximo, o rendimento e o fator de potência, além de reduzir sensivelmente o ruído. Construtivamente são menores e isentos de manutenção, pois não utilizam contactos e partes móveis, como nos motores anteriores. Porém o seu torque de arranque é inferior ao do motor de fase dividida (50% a 100% do conjugado nominal), o que limita sua aplicação a equipamentos que não requerem elevado torque de arranque, tais como: máquinas de escritório, ventiladores, exaustores, sopradores, bombas centrifugas, esmeris, pequenas serras, furadeiras, condicionadores de ar, pulverizadores, etc. São fabricados normalmente para potências de 1/50 a 1,5 cv.
3.6.5 - Motor com Dois Condensadores
É um motor que utiliza as vantagens dos dois anteriores: arranque como o do motor de condensador de partida e funcionamento em regime idêntico ao do motor de condensador permanente. Porém, devido ao seu alto custo, normalmente são fabricados apenas para potências superiores a 1 cv.
3.7 - Motores Trifásicos
O motor de indução trifásico é o tipo mais utilizado, tanto na indústria como no ambiente doméstico, devido à maioria dos sistemas atuais de distribuição de energia elétrica serem trifásicos de corrente alternada. A utilização de motores de indução trifásicos é aconselhável a partir dos 2 KW, Para potências inferiores justifica-se o uso de monofásicos. O motor de indução trifásico apresenta vantagens ao monofásico, como o arranque mais fácil, menor nível de ruído e menor preço para potências superiores a 2KW.
3.7.1 - Gaiola de Esquilo
Este é o motor mais utilizado na indústria atualmente. Tem a vantagem de ser mais econômico em relação aos motores monofásicos tanto na sua construção como na sua utilização. Além disso, escolhendo o método de arranque ideal, tem um leque muito maior de aplicações. O rotor em gaiola de esquilo é constituído por um núcleo de chapas ferromagnéticas, isoladas entre si, sobre o qual são colocadas barras de alumínio (condutores), dispostos paralelamente entre si e unidas nas suas extremidades por dois anéis condutores, também em alumínio, que curtocircuitam os condutores. O estator do motor é também constituído por um núcleo ferromagnético laminado, que nas cavidades do qual são colocados os enrolamentos alimentados pela rede de corrente alternada trifásica. A vantagem deste rotor relativamente ao rotor bobinado é que resulta numa construção do induzido mais rápida, mais prático e mais barato. As barras condutoras da gaiola são colocadas geralmente com certa inclinação, para evitar as trepidações e ruídos que resultam da ação eletromagnética entre os dentes das cavidades do estator e do rotor. A principal desvantagem refere-se ao fato de o torque de arranque ser reduzido em relação à corrente absorvida pelo estator. Trata-se essencialmente de um motor de velocidade constante.
3.7.2 - Princípio de Funcionamento -
campo girante Quando uma bobina é percorrida por uma corrente elétrica, é criado um campo magnético dirigido conforme o eixo da bobina e de valor proporcional à corrente. Na figura ao lado é mostrado um “enrolamento monofásico” atravessado por uma corrente I, e o campo H é criado por ela; o enrolamento é constituído de um par de pólos (um pólo “norte” e um pólo “sul”), cujos efeitos se somam para estabelecer o campo H. O fluxo magnético atravessa o rotor entre os dois pólos e se fecha através do núcleo do estator. Se a corrente I é alternada, o campo H também é, e inverte seu sentido em cada meio ciclo. O campo H é “pulsante”, pois sua intensidade “varia” proporcionalmente à corrente, sempre na “mesma” direção norte--sul. Na figura ao lado é mostrado um “enrolamento trifásico”, que é composto por três monofásicos espaçados entre si de 120 graus. Se este enrolamento for alimentado por um sistema trifásico, as correntes I1, I2 e I3 criarão, do mesmo modo, os seus próprios campos magnéticos H1, H2 e H3. Estes campos são espaçados entre si de 120 graus. O campo total H resultante, a cada instante, será igual à soma dos três campos H1, H2 e H3 naquele instante.
fonte de pesquisa:https://www.joinville.ifsc.edu.br/~roberto.sales/PIP/Apostilas%20e%20manuais/Motores/Apostila%20-%20Comandos%20e%20Motores%20El%C3%A9tricos.pdf